Magnetic ordering and low field CMR in La(Mn, Cr)O_{3+δ} (δ≈0.09, 0.12) compounds

K. Georgalas¹, E. Syskakis², A. Samartzis³

¹Section of Solid State Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis Gr-15784 Zografos, Athens, GREECE

 Cr^{3+} substituting Mn^{3+} in LaMnO₃-based compounds can be viewed as a "big" immobile hole, since it has the same electronic configuration $(t_{2g}{}^3e_g{}^0)$, as Mn^{4+} and an ionic radius $r_{Cr}{}^{3+} = 0.615$ Å almost equal to that of Mn^{3+} . It has been claimed that Cr^{3+} participates to the DE mechanism, while it is known to aid the long range ferromagnetic (FM) ordering in the low doping regime.

In the present work, electrical resistivity, $\rho(T)$ (80<T<1100K), $\chi_{ac}(T)$ and LFMR(T) (H=2kG) (80<T<300K) measurements were carried out on O₂-enriched LaMn_{1-x}Cr_xO_{3+ $\delta}$} specimen. The powders were prepared by solid state reaction from high purity La₂O₃, Cr(NO₃)₃·9H₂O and MnO₂ and the specimen were sintered at T=1300^oC in air. In order to obtain high O₂ excess they were heated in O₂ and in air (T=900^oC/t=100h). XRPD patterns confirmed that the specimen were single phased with the O₂ treated specimen having R $\overline{3}c$ symmetry.

Specimen show small polaron semiconducting behavior at 80<T<1100K. The Cr^{3+} substitution for Mn^{3+} increases the $\rho(T)$ and the activation energy, Ea, due to the gradual decrease of the delocalized electrons concentration and increase of (Mn, Cr)-O bond distance. According to the $\chi_{ac}(T)$ measurements, long range FM order is established in all samples at T<170K. The Curie temperatures, $T_{C_{i}}$ vary non-monotonously with x, displaying a maximum value close to x=0.12, caused by the competition of the DE FM $Mn^{3+}-Mn^{4+}$ with SE AFM $Mn^{3+}-Cr^{3+}$ interactions. LFMR(T) show low negative magnetoresistance approximately of the order of 2-3%. The broad peaks of –MR observed close to the corresponding $T_{C'}$ s, are attributed to intrinsic DE CMR. The progressive decrease of –MR versus x, implies that Cr^{3+} does not participate in the DE mechanism.